Genetic Algorithm for Variable and Samples Selection in Multivariate Calibration Problems
نویسندگان
چکیده
Corresponding Author: Anderson Silva Soares Federal University of Goias, Goiania, Brazil Email: [email protected] Abstract: One of the main problems of quantitative analytical chemistry is to estimate the concentration of one or more species from the values of certain physicochemical properties of the system of interest. For this it is necessary to construct a calibration model, i.e., to determine the relationship between measured properties and concentrations. The multivariate calibration is one of the most successful combinations of statistical methods to chemical data, both in analytical chemistry and in theoretical chemistry. Among used methods can cite Artificial Neural Networks (ANN), the Nonlinear Partial Least Squares (N-PLS), Principal Components Regression (PCR) and Multiple Linear Regression (MLR). In addition of multivariate calibration methods algorithms of samples selection are used. These algorithms choose a subset of samples to be used in training set covering adequately the space of the samples. In other hand, a large spectrum of a sample is typically measured by modern scanning instruments generating hundreds of variables. Search algorithms have been used to identify variables which contribute useful information about the dependent variable in the model. This paper proposes a Genetic Algorithm based on Double Chromosome (GADC) to do these tasks simultaneously, the sample and variable selection. The obtained results were compared with the well-known algorithms for samples and variable selection Kennard-Stone, Partial Least Square and Successive Projection Algorithm. We showed that the proposed algorithm can obtain better calibrations models in a case study involving the determination of content protein in wheat samples.
منابع مشابه
Application of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives
Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...
متن کاملApplication of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives
Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...
متن کاملMulti-Objective Evolutionary Algorithm NSGA-II for Variables Selection in Multivariate Calibration Problems
This paper proposes a multiobjective formulation for variable selection in multivariate calibration problems in order to improve the generalization ability of the calibration model. The authors applied this proposed formulation in the multiobjective genetic algorithm NSGA-II. The formulation consists in two conflicting objectives: minimize the prediction error and minimize the number of selecte...
متن کاملA GPU-Based Implementation of the Firefly Algorithm for Variable Selection in Multivariate Calibration Problems
Several variable selection algorithms in multivariate calibration can be accelerated using Graphics Processing Units (GPU). Among these algorithms, the Firefly Algorithm (FA) is a recent proposed metaheuristic that may be used for variable selection. This paper presents a GPU-based FA (FA-MLR) with multiobjective formulation for variable selection in multivariate calibration problems and compar...
متن کاملAn improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling
Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCS
دوره 11 شماره
صفحات -
تاریخ انتشار 2015